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Homochiral cyanohydrins are of synthetic interest as they may Table 1. Optimization Studies®

be elaborated into a number of key multifunctional intermediates. catalyst 2 OTMS
There have been intense research activities in enantioselective (30 mol %) .
Ph)J\ TMSCN —————> pr"“cNn

synthesis of cyanohydrins from aldehydes, ketones, and acetals in
recent yeard.The resultant reactions mainly employed catalysts

such as enzymes, cyclic dipeptides, and transition metal complexes. gy, catalyst solvent temp (°C) vielde (%) ce! (%)
But the asymmetric cyanation of ketones has been historically

1a 3a

considered as problematic. At present, the majority of chiral % ga Ezg ,28 gg j
catalysts used for this goal are chiral ligands attached to metals 3 2c Et,O -20 98 11
such as AB Ti,* and La? basic cinchona alkaloid catalystshiral 4 2d EtO —20 15 14
oxazaborolidinium iondand thiourea catalysédn these contexts, 5 2e EO —20 65 32
. R 6 2f EtO -20 45 44
a new methodology emerged from the study of interesting findings 7 2g ELO _20 71 2
by Shibasaki and our group in which the oxygen atom of the 8 2h Et,O ~20 98 2
phosphine oxide andil-oxide coordinated to the silicon atom of 9 2f THF -20 50 54
TMSCN to activate TMSCN. Meanwhile, some important observa- 10 ZfE THF —20 70 80
tions have been made regarding the effect of heterogeneous catalysts 11 ;sz m:z :ig gi gi
on the synthesis of racemic cyanohydrins, such as solid acid and 13 ofb.d THE —45 96 94
base catalystsdiamino-functionalized mesoporous polym&rand
the inorganic/organic salts catalysts used in our early Wotk. aReactions were carried out on a 0.5 mmol scale with 1.2 equiv of

; ; ; ; TMSCN in 1.0 mL of solvent, unless noted otherwi8&he catalyst was
was of particular interest to us to explore this approach via the stirred with 1.2 equiv of TMSCN in THF o1 h at 30°C before

development of a catalytic asymmetric cyanation of ketones with ,cetophenone was addedhe catalyst was prepared in sifld.5 equiv
readily accessible amino acid salts, in light of the abundance of of TMSCN and 0.5 equiv dPrOH were usedt Isolated yield.! Determined
chiral amino acids. by GC analysis? The absolute configuration of the major product vi&gas
Herein, we described'the first e'xam_ple of chiral organic sz_ilt_s_ as gi%ggﬁ?ngﬁgfomg{:gﬁ %?c\ilgttgiltst])? literature, and the others Riéisee
catalysts for asymmetric cyanosilylation of ketones. Our initial
catalyst screening revealed thagphenylglycine sodium saif was
an effective catalyst and led to product formation in 44% ee.
L-Proline has been widely used as an organocatalyst in many
reactions;? with its sodium salt giving a racemic product, however.
Both the primary amine moiety and the metal carboxylate moiety
of catalyst2f were essential for the catalytic activity and asymmetric
induction. Lithium and potassium saltsilephenylglycine were less A ) ; .
effective than the sodium salt in that the products were both racemic, @mount of water contained in the catal@$twas crucial to retain
The crucial role of the primary amino group 2fwas evident upon enantioselectivity, and any attempt to remove water from the catalyst
comparison of the amine substituent on the catalyst (see Supportingdave bad resuits. Moreover, introductionRfOH greatly promoted
Information for details). cyanosilylation rates, with complete acetophenone conversion within
24 h at—45 °C without loss of enantioselectivity (Table 1, entry
OH OH 13) (see Supporting Information for details).

H
LN)....{O @\/cha /—g_g The scope of-phenylglycine sodium saftf-catalyzed enantio-
NaOOC . - . .
ONa
2a

ee (Table 1, entries 6 and 9). Moreover, some key features
associated with the use af-phenylglycine sodium salt are
noteworthy. When the catalyst was stirred with TMSCN in THF
for 1 h at 30°C before acetophenone was added, the enantiose-
lectivity was greatly improved from 54% to 80% ee -a20 °C

and up to 94% ee at45 °C (entries 9-12). Interestingly, a small

selective cyanosilylation was explored using a variety of ketones.
Table 2 summarizes the most significant results obtained under
optimized conditions. In most cases, useful reaction rates were

®_< HO obtained. Most of the aromatic, heterocyclic ketones were converted

COONa COONa ©ACOOM into the corresponding cyanohydrin trimethylsilyl ethers with high
2f M =Na enantioselectivities (9897% ee). Wheittrans-cinnamophenone was
gﬁm E subjected to our reaction condition, only the 1,2-addition product

was afforded in 96% isolated yield and 97% ee (Table 2, entry 9).
Optimization of other reaction parameters led to further improve- The aliphatic andx,3-saturated ketones gave moderate ee values
ments in enantioselectivity with cataly&f. The best result was  (entries 11, 12).-Phenglycine could be easily and efficiently
obtained when 30 mol % catalyst loading was used. The solvent recovered for reuse by simple filtration and acidic treatment after
study indicated that THF afforded the best overall result, with 54% the reaction (ca. 94% recovery yield ofphenylglycine).
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Table 2. Enantioselective Cyanosilylation of Ketones Catalyzed recyclable catalysts and employment of simple and convenient

by 2f& experimental procedure. These features should render the reaction
o 2f (30 mol%) TMSQ, CN a catalytic entry for the other asymmetric creation of quaternary
o, + T™MseN —————— > - i .
R!” “R2 PrOH, THF, -45°C R2 R! stereocenters. Further efforts will be devoted to search for effective
1 3 systems that tolerate a broad range of ketones with higher yield
and enantioselectivity.
entry ketone 1 time (h) yield® (%) eec (%)
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Scheme 1. Activation of Organosilicons by Nucleophilic Catalysts
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